«по следам лавин»
Пятигорский информационно-туристический портал
 • Главная• СсылкиО проектеФото КавказаСанатории КМВ
«ПО СЛЕДАМ ЛАВИН» • Лавины во время снегопадов и метелейОГЛАВЛЕНИЕ



 Горный туризм 

Лавины во время снегопадов и метелей

Снег срывает со склонов только одна сила — сила тяжести. Чтобы понять ее роль, вырежем мысленно из слоя снега, лежащего на плоском склоне, куб. Силу тяжести, направленную вертикально вниз, в соответствии с законами механики, можно разложить на две составляющие — одна будет направлен перпендикулярно к поверхности склона, на котором лежи куб, а другая — параллельно этой поверхности.

Чем больше толщина снежного покрова на склоне, тем больше составляющая силы тяжести, направленной вдоль склона,- она растет прямо пропорционально толщине снега.

Наверное, каждый человек неоднократно прочувствовал на себе эту самую „составляющую": именно благодаря ей можно быстро съехать на лыжах или санях с горы. Но есть другие силы, которые противодействуют составляющей силы тяжести, направленной параллельно склону, и удерживают снег на склоне. Это, во-первых, сцепление нашего куба с нижележащим снегом или поверхностью грунта. Во-вторых, даже при отсутствии сцепления (а такое бывает) это сила трения, зависящая, по законам физики, от веса куба. Сумму сцепления и трения называют сопротивлением сдвигу. Наконец, в-третьих, смещению куба противодействует снег, лежащий ниже по склону, а вышележащий — удерживает его за счет связей между частицами снега. Эти силы обычно называют контурными. Их очень просто смоделировать: стоя на лыжах на склоне, упритесь палками перед собой, чтобы не съехать, или зацепитесь ими сзади за куст или дерево — вот вы и получили представление о контурных силах.

Хотя сила тяжести действует всегда, далеко не всегда возникает лавина. Дело в том, что сила тяжести — это только пороховой заряд, который надо чем-то воспламенить. Иначе говоря, нужен спусковой механизм, который даст силе тяжести возможность преодолеть силы, удерживающие снег на склоне,

Природа заготовила много „спусковых механизмов", но не все они известны. Попробуем найти спусковой механизм лавин, возникающих во время снегопадов и метелей, так как это наиболее благоприятные периоды образования лавин в горах.

Вскоре после снегопада образуется тонкий слой снега, в котором возникают силы, удерживающие его на склоне,—сцепление снежных кристаллов друг с другом и с той поверхностью, на которую он лег. Так как слой свежеотложенного снега очень тонок, то сила тяжести невелика — она много меньше сил, удерживающих пласт. При дальнейшем продолжении снегопада все будет зависеть от скорости изменения тех и других сил. Если сила тяжести будет возрастать быстрее сил, удерживающих снег на склоне, то в какой-то момент она сравняется с ними — наступят условия равновесия снежного пласта на склоне. Дальнейшее продолжение снегопада приведет к превышению силы тяжести, направленной вдоль склона, над удерживающими силами, и тогда пласт снега неизбежно обрушится в виде лавины. Вот он — спусковой механизм: скорость увеличения силы тяжести опережает скорость роста сил, удерживающих снег на склоне.

Составляющую силы тяжести очень просто выразить через толщину снежного покрова, если известна его плотность. Толщина свежеотложенного пласта, при которой устанавливаемой равновесие сил, удерживающих и сдвигающих пласт, называется критической толщиной. Огромное разнообразие видов свежеотложенного снега приводит к такому же разнообразию величин критической толщины снега. Очевидно также, что для одного и того же вида снега критическая толщина будет зависеть и от крутизны: чем больше крутизна склона, на котором лежит пласт, тем меньше его критическая толщина и наоборот. На склонах крутизной 60° и больше снег вообще не держится, при снегопаде он с таких склонов сразу осыпается. Все приведенные рассуждения относятся и к случаю накопления снега на склоне за счет его переноса ветром.

Теперь, когда ясен спусковой механизм образования лавин во время снегопадов и метелей, казалось бы, очень просто предсказать такие лавины: как только образовался пласт свежеотложенного снега, определяются все необходимые величины для расчета удерживающих его сил. По сумме этих сил определяется критическая толщина, то есть граница между устойчивым и неустойчивым состоянием. А дальше совсем просто: если известна скорость прироста высоты свежевыпавшего снега, то на эту величину делят критическую высоту и получают время, когда все силы уравновесятся. Пусть, например, критическая толщина будет 100 сантиметров, а скорость нарастания слоя — 10 сантиметров в час, тогда слой достигнет критической толщины через 10 часов, и после этого в любой момент можно ожидать лавину.

Конечно, на деле все не так просто. Рассмотренная модель устойчивости снега на склоне построена для идеальных условий, которые бывают очень редко. Так, склоны гор практически не бывают плоскими: в профиле они или вогнуты, или выпуклы, или даже волнистые, или это сочетание выпуклого и прямого участков, вогнутого и прямого и т. п. Форма продольного профиля существенно сказывается на устойчивости снега на склоне. Вдоль склона меняется и толщина снега, хотя в модели она была принята как постоянная; снег редко откладывается ровным слоем на склонах, особенно при участии ветра, а расчеты показывают, что изменение толщины снега в пределах 10 % на склоне крутизной 35° меняет критическую толщину снега почти в полтора раза. Еще одно допущение заключается в том, что силы сцепления, внутреннее трение и контурные силы принимаются неизменными во время снегопада. Наконец, допущение о неизменности скорости нарастания толщины снега за время снегопада тоже далеко не всегда соответствует реальным условиям.

Многие из этих допущений вполне преодолимы. Существует, например, соответствующий математический аппарат, с помощью которого можно учесть профиль склона и изменчивость толщины слоя снега. Можно чаще измерять скорость нарастания толщины снега во время снегопада или метели, чтобы вносить соответствующие поправки в расчеты. Но есть пока почти непреодолимая трудность — практически нет возможности измерить силы, удерживающие снег на склоне, то есть его сопротивление сдвигу, и контурные силы, так как нет приборов и методов, которые позволяли бы это делать надежно для всех видов снега в слое малой толщины. Особенно сложно определять силу сопротивления сдвигу. Обычно, как и для грунтов, ее представляют в виде суммы сил сцепления и трения. Приборы, применяемые для этого в механике грунтов, не всегда пригодны для снега, так как образцы снега при измерении их прочностных свойств часто деформируются.

Теория прочности снега пока еще недостаточно разработана; это связано не только со сложностью задачи, но и с тем, что серьезные механики и инженеры нередко иронически относятся к изучению свойств такого эфемерного вещества, как „прошлогодний снег". Известный специалист в области механики снега Малькольм Меллор, выступая в 1977 году на собрании Международного гляциологического общества, рассказал, что, когда он начинал работать в армейском подразделении по исследованию снега, льда и мерзлоты — Snow, Ice and Permafrost Research Establishment, или, сокращенно, SIPRE,— эту аббревиатуру многие маститые специалисты инженерного корпуса армии Соединенных Штатов расшифровывали так: Stupid Individuals Performing Ridiculous Experiments, что переводится как «Глупые индивидуумы, проводящие нелепые эксперименты». В некоторых аспектах такой взгляд на проблему механики снега сохранился до сих пор.

Неразработанность вопросов теории прочности снега, отсутствие надежных методов определения его механических свойств, казалось бы, предопределяют невозможность предсказания лавин во время снегопадов и метелей. Однако лавинщики - практики просто не подозревали, что проблема столь сложна, поэтому, понимая в целом необходимость определения механических свойств снега для решения проблемы прогнозирования лавин, они попытались решить ее чисто эмпирическим путем исключив необходимость обращения к этим свойствам снега.

Впервые такой прогноз лавин был разработан для района добычи апатитовой руды в Хибинах после лавинной катастрофы в конце 1935 года. Здесь еще в 1933 году была организована исследовательская станция для защиты от снега участили Кировской железной дороги. Разразившаяся лавинная катастрофа заставила вплотную заняться разработкой прогноза лавин.

В Хибинах обвалы чаще всего происходят во время буранов — снегопадов с сильными метелями: на такие случаи приходится 80% всех обвалов снега. И.К.Зеленой, сотрудник созданной в 1936 году Снежно-метеорологической службы комбината „Апатит", изучил все метели и сопоставил их с днями схода лавин в районе поселка и подъездных путей. Оказалось что лавины возникают не при каждой метели. Порог, через который должна перешагнуть скорость ветра, чтобы наметать в лавиносборы с необходимой интенсивностью достаточное количество снега, составляет 10 метров в секунду. Только после его превышения через определенное время наступала опасная ситуация. Уже зимой 1936/37 года было выдано 15 „обвальным предупреждений", из которых 12 оправдалось.

В дальнейшем метод уточнялся. Были использованы дополнительные материалы по метеостанции на Апатитовой горе, которые лучше отражали ветровые условия района. Выявилось, что надо отбросить те случаи, когда при скорости ветра 10 метров в секунду и больше снегопада нет, а также, когда такой ветер не сопровождается метелью, так как поверхности снега укрыта от ударов ветра панцирем ледяной корки после оттепели или прочным ветровым настом от предыдущей метели. Была сделана попытка учесть направление ветра: оказалось, что самые крупные лавины возникают во время таких ветров с метелью, по отношению к которым склоны являются подветренными. Если сильный ветер с метелью дует вдоль склона, то лавины тоже обрушиваются, но размеры их значительно меньше.

Уже после Отечественной войны руководитель лавинной службы комбината „Апатит" В.Н.Аккуратов использовал для прогноза лавин, возникающих во время метелей, данные наблюдений за количеством переносимого снега, которые проводились на вершине горы Юкспор с 1936 года.

Количество переносимого метелями снега измеряется специальным прибором — метелемером, действующим как ловушка для летящих над поверхностью снежных кристаллов. С помощью метелемера можно определить, сколько граммов снега переносит ветер за минуту через каждый квадратный сантиметр в плоскости, перпендикулярной поверхности снега. Когда переносимый метелью снег попадает с наветренного на подветренный склон, ветер ослабевает, частицы снега выпадают и образуют наносы свежеотложенного снега, скорость нарастания которых прямо зависит от величины метелевого переноса. В.Н.Аккуратов определил, что лавины не образуются при метелевом переносе менее 1,5 грамма через квадратный сантиметр в минуту. Это означало, что в условиях Хибин метелевый перенос, меньший данного критического значения, не обеспечивает достаточно быстрого роста толщины свежеотложенного слоя, соответственно сумма сил, удерживающих снег на склоне, растет быстрее, чем составляющая силы тяжести. Спусковой механизм не срабатывает — „лавинная пружина" сжимается недостаточно. Но после того, как величина переноса снега при метели достигнет порога в 1,5 грамма через квадратный сантиметр в минуту, примерно через 10 часов следует ожидать схода первых лавин. Десять часов нужно для того, чтобы сжать „лавинную пружину" до отказа. Чем больше ветер переносит снега, тем быстрее сжимается лавинная пружина: при метелевом переносе втрое больше критического лавину следует ожидать через 6 часов, а при переносе в 8 раз больше критического лавины начнут сходить уже через 3 часа. Этого времени вполне достаточно, чтобы вывезти людей и технику в безопасное место и прекратить движение на дорогах, которым угрожают лавины.

Разработанный в Хибинах метод дает возможность предсказывать не время схода какой-то определенной лавины, а момент наступления такого периода во время бурана, когда в исследуемом районе в одном из лавиносборов может сорваться первая лавина. Таким образом, прогноз относится к целому, сравнительно однородному району, в котором могут быть десятки мест схода лавин. Прогноз считается оправдавшимся, если сошла хотя бы одна лавина, поэтому он получил наименование фонового прогноза времени наступления лавинной опасности, но для краткости говорят „прогноз лавин".

Такой метод прогноза можно назвать методом критических ситуаций: одно явление может вызвать другое явление, только перейдя определенный порог, причем в каждом конкретном месте сам порог может быть другим. Метод критических ситуаций хорошо работает там, где есть очевидная связь схода лавин с определенными метеорологическими явлениями, которые наблюдаются в предшествующий лавинам период.

В горах Уосач штата Юта в начале 50-х годов независимо от исследователей в Хибинах пришел к фоновому прогнозу времени наступления лавинной опасности при снежных штормах Монтгомери Отуотер. Потом он шутливо заметит, что толкнула его на этот путь нелюбовь копать шурфы в глубоком снежном покрове, так как в то время на Западе все лавинщики равнялись на швейцарскую школу тщательного изучения снежной толщи. Отуотеру для прогноза пришлось учесть другие метеорологические явления и другие критические пороги, что было связано с особенностями условий в горах на Западе США при снежных штормах. Во время сильного снегопада при ветре необходимо, как установил Отуотер, чтобы были преодолены по крайней мере два порога: во-первых, скорость выпадения осадков должна быть равна или больше 2,5 миллиметра в час (здесь осадки измеряются слоем воды, а не толщиной снега), во-вторых, ветер должен иметь скорость не менее 6 метров в секунду. Лавинная опасность при переходе этих порогов возникает тогда, когда сумма выпавших осадков в виде снега достигнет 25 миллиметров (опять в слое воды), или, иными словами, через 10 часов.

После разработки первых прогнозов лавин в Хибинах методом критических ситуаций они стали широко применяться во многих районах нашей страны и дали удовлетворительные для практических целей результаты. В прогнозы стали включать дополнительные пороговые показатели, которые учитывают конкретную обстановку того или иного района. Изменен подход и к самим пороговым значениям — теперь их выделяют два: одно — крайнее нижнее значение, ниже которого лавины никогда не возникают, другое — крайнее верхнее, при превышении которого лавины возникают всегда. Между этими крайними пороговыми значениями возможны ситуации с лавинами и без них. В этом интервале иногда выделяют промежуточное пороговое значение, которое может, например, разделять такие ситуации между нижним и промежуточным порогами: из 10 случаев только в 3 возникали лавины, то есть в 30 % случаев, а между промежуточным порогом и крайним верхним лавины отмечались в 6 случаях из 12, то есть в 50 % случаев.

В последнее время все чаще используется статистическая обработка данных для нахождения корреляционных зависимостей между началом схода лавин во время снегопадов и метелей и предшествующими метеорологическими явлениями. В результате получают формулы, в которых момент схода лавин зависит от некоторого числа наблюдаемых в данном районе метеорологических явлений.

В методе критических ситуаций достаточно хорошо исследован нижний критический предел и почти не исследован верхний. Казалось бы, если данное метеорологическое явление сильно превышает критический порог, то должны возникать очень опасные лавинные ситуации. Между тем в районе Норильских гор, где очень часты сильные метели, лавины, как это ни странно, практически отсутствуют. Это объясняется тем, что частые и очень сильные метели так „укладывают" раздробленные снежинки, что многометровая толща остается прочно лежащей на склонах в течение всей зимы.

Прогноз лавин во время снегопадов и метелей выдается обычно за несколько часов до наступления опасного периода. Увеличить его точность и заблаговременность не удается в связи с отсутствием надежных методов прогноза погоды в горах. Все прогнозы лавин основываются на использовании так называемого метода тенденции, смысл которого заключается в следующем утверждении — то, что наблюдается сейчас, будет продолжаться и дальше. Следовательно, если в данный момент наблюдается снегопад с интенсивностью осадков выше критического порога, то предполагается, что он будет таким в течение еще нескольких часов. Опираясь на эту тенденцию, рассчитывают время схода первых лавин. Если через какое-то время интенсивность осадков возрастет, то в прогноз можно ввести коррективы, так как опасный период наступит раньше. Если же до истечения времени прогноза снегопад прекратится или его интенсивность станет ниже пороговой, то предупреждение о лавинной опасности снимается. Отсутствие метеорологического прогноза осадков и метелей в горах накладывает серьезное ограничение на повышение заблаговременности и точности прогноза лавин, поэтому вряд ли следует ожидать в ближайшее время повышения надежности подобных прогнозов лавин. Скорее следует удивляться тому, что при отсутствии метеорологических прогнозов прогнозы лавин, основанные на методе критических ситуаций, оправдываются в 70—80 % случаев. Безусловно, многое здесь следует относить за счет знания местных условий и интуиции лавинщиков, разрабатывающих прогнозы. Понимая, что без метеорологического прогноза развивать дальнейшую работу трудно, некоторые лавинщики небезуспешно пытаются прогнозировать сильные снегопады в горах, что повышает надежность и заблаговременность прогноза лавин.


БИБЛИОТЕКА

От автора
По следам лавин
Лавинные катастрофы
Где падают лавины?
Лавинная опасность возрастает
История слова
Рождение лавин
Лавины во время снегопадов и метелей
Неожиданные лавины
Мокрые лавины
Прогноз непредсказуемого
Лавины в движении
Тигр в шкуре ягненка
Прибор, который еще не создан
Осыпаться, скользить, течь, лететь, прыгать...
Воздушная волна?
Лавины-карлики и лавины-гиганты
Погребенные лавиной
Говорят свидетели
Можно ли уцелеть в лавине?
Спасательные работы
Защита от лавин
Границы и запретные зоны
Предупреждение и прогнозы
Искусственное регулирование лавин
Противолавинные сооружения
Защитная роль леса
Лавиноведение — поиск идеи
Из истории изучения лавин
Штрихи к портретам
Вместо заключения










Рейтинг@Mail.ru Использование контента в рекламных материалах, во всевозможных базах данных для дальнейшего их коммерческого использования, размещение в любых СМИ и Интернете допускаются только с письменного разрешения администрации!